A-LEVEL
Mathematics
MM03 - Mechanics 3
Mark Scheme

6360
June 2018
Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

## Key to mark scheme abbreviations

| M | mark is for method |
| :---: | :---: |
| m or dM | mark is dependent on one or more M marks and is for method |
| A | mark is dependent on M or m marks and is for accuracy |
| B | mark is independent of $M$ or m marks and is for method and accuracy |
| E | mark is for explanation |
| or ft or F | follow through from previous incorrect result |
| CAO | correct answer only |
| CSO | correct solution only |
| AWFW | anything which falls within |
| AWRT | anything which rounds to |
| ACF | any correct form |
| AG | answer given |
| SC | special case |
| OE | or equivalent |
| A2,1 | 2 or 1 (or 0) accuracy marks |
| -x EE | deduct $x$ marks for each error |
| NMS | no method shown |
| PI | possibly implied |
| SCA | substantially correct approach |
| c | candidate |
| sf | significant figure(s) |
| dp | decimal place(s) |

## No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

| Question | Solution | Marks | Total | Comments |
| :---: | :--- | :---: | :---: | :--- |
| 1 | $[t]=\left(\mathrm{ML}^{2}\right)^{\alpha}\left(\mathrm{ML}^{2} \mathrm{~T}^{-2}\right)^{\beta}$ |  |  |  |
| $=\mathrm{M}^{\alpha+\beta} \mathrm{L}^{2 \alpha+2 \beta} \mathrm{~T}^{-2 \beta}$ |  |  |  |  |
| $\beta=-\frac{1}{2}$ | M 1 |  | M1: Correct unsimplified <br> dimensions of $I$ and $K$ <br> A1: Simplifying expression <br> correctly PI <br> A1:Correct value |  |
|  |  |  | A1 |  |


| Question | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 2 (a) | $\begin{aligned} & x=6 t \\ & y=8 t-\frac{1}{2} g t^{2} \\ & y=8 \times \frac{x}{6}-\frac{1}{2}(9.8)\left(\frac{x}{6}\right)^{2} \\ & y=\frac{4 x}{3}-\frac{49 x^{2}}{360} \end{aligned}$ | M1 <br> M1 <br> dM1 <br> A1 | 4 | M1: Correct horizontal equation M1: Correct vertical equation <br> dM 1 : Eliminating $t$ from $y$ A1: CSO, AG |
| (b) | $\begin{aligned} & 2=\frac{4 x}{3}-\frac{49 x^{2}}{360} \\ & 49 x^{2}-480 x+720=0 \\ & x=\frac{480 \pm \sqrt{(-480)^{2}-4(49)(720)}}{2(49)} \\ & x=7.9469 \ldots, 1.8490 \ldots \end{aligned}$ <br> The distance $=6.10 \mathrm{~m}$ | M1 <br> dM1 <br> A1 <br> A1F | 4 | M1: Substituting 2 for $y$ in vertical equation <br> dM1: Solving their quadratic equation by formula, or completing the square or calculator. Must see the method if the values of $x$ are wron. <br> A1: For both solutions, PI from the answer <br> A1: Accept 6.1 m , FT on their solution of their equation |
|  | Total |  | 8 |  |


| Question | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 3 (a) | $\begin{aligned} & \int_{1}^{4} k\left(5 t^{\frac{3}{2}}+2 t\right) \mathrm{d} t=1.5(10)-1.5(6) \\ & k\left[2 t^{\frac{5}{2}}+t^{2}\right]_{1}^{4}=1.5(10)-1.5(6) \\ & k\left[2(4)^{\frac{5}{2}}+(4)^{2}-2(1)^{\frac{5}{2}}-(1)^{2}\right]=1.5(10)-1.5(6) \\ & k=\frac{6}{77} \quad \text { OE } \end{aligned}$ | M1 <br> A1 <br> dM1 <br> A1 <br> A1 | 5 | M1: Using $\begin{aligned} & \int F \mathrm{~d} t=m v-m u \text { or } \\ & \int F \mathrm{~d} t=m \int \mathrm{~d} v \end{aligned}$ <br> A1: All correct, condone missing units <br> dM1: Correct integration, condone missing limits <br> A1: Correct use of correct limits <br> A1: CAO, Accept 0.0779 or better |
| (b) | $\frac{6}{77}\left[2(3)^{\frac{5}{2}}+(3)^{2}-2(1)^{\frac{5}{2}}-(1)^{2}\right]=1.5(v)-1.5(6)$ | M1 |  | M1: Correct impulsemomentum equation using their $k$ |
|  | $v=7.93 \mathrm{~ms}^{-1}$ | A1 | 2 | A1: CAO, AWRT 7.93 |
| (c) | $1.5(7.93126829)-1.5(6)=$ | M1 |  | M1: Using $I=m v-m u$ with their velocity from (b) |
|  | 2.8969.... Ns | A1F | 2 | A1F: AWRT 2.9 FT their velocity from part (b) |
|  | Total |  | 9 |  |



| Question | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 5 (a) | $\dot{y}=20 \sin 60^{\circ}-g \cos 30^{\circ} t$ | M1 |  | M1: Correct perpendicular velocity equation |
|  | $t=\frac{20 \sin 60^{\circ}}{g \cos 30^{\circ}}$ or $\frac{20}{g}$ or awrt 2.041 | A1 |  | A1: Correct expression for $t$ |
|  | $y=20 \sin 60^{\circ}\left(\frac{20 \sin 60^{\circ}}{g \cos 30^{\circ}}\right)-\frac{1}{2} g \cos 30^{\circ}\left(\frac{20 \sin 60^{\circ}}{g \cos 30^{\circ}}\right)^{2}$ | dM1 |  | dM1: Correct perpendicular equation with their time |
|  | $y=17.7 \mathrm{~m}$ | A1 | 4 | A1: CAO, AWRT 17.7 |
| (b) | Time from $O$ to $P=$ $2 \times \frac{20 \sin 60^{\circ}}{g \cos 30^{\circ}}$ or $\frac{40}{g}$ or awrt 4.08 | B1 |  | B1: Correct time |
|  | $\dot{y}=20 \sin 60^{\circ}-g \cos 30^{\circ}\left(2 \times \frac{20 \sin 60^{\circ}}{g \cos 30^{\circ}}\right)$ | M1 |  | M1: Correct perpendicular velocity with their time |
|  | $\dot{y}=-17.32 \text { or }-10 \sqrt{3}$ | A1 |  | A1: Correct perpendicular |
|  | $\dot{x}=20 \cos 60^{\circ}+g \sin 30^{\circ}\left(2 \times \frac{20 \sin 60^{\circ}}{g \cos 30^{\circ}}\right)$ | M1 |  | velocity <br> M1: Correct parallel velocity with their time |
|  | $\dot{x}=30$ | A1 |  | A1: Correct parallel velocity |
|  | Rebound: $\dot{y}^{\prime}=\frac{1}{2}(17.32) \quad \text { or } \quad \frac{1}{2}(10 \sqrt{3}) \quad \mathrm{OE}$ | dM1 |  |  |
|  | $\dot{x}^{\prime}=30$ or unchanged | B1 |  | dM1: Restitution <br> FT their speed B1F: Parallel speed unchanged, PI from rebound speed, FT their speed |
|  | Speed of rebound $=\sqrt{30^{2}+\left(\frac{1}{2}(17.32)\right)}$ | dM1 |  | dM1: Dependent on |
|  | $=31.2 \mathrm{~ms}^{-1}$ | A1 | 9 | all M1s and the dM1, FT their speeds A1: CAO, AWRT 31.2 |
|  | Total |  | 13 |  |


| Question | Solution | Marks | Total | Comments |
| :---: | :--- | :---: | :---: | :---: |
| 5 (a) | Alternative: <br> $\dot{y}^{2}=\left(20 \sin 60^{\circ}\right)^{2}-2 g \cos 30^{\circ} y$ | M1 |  | M1: Equation with correct <br> terms, allow sign error <br> A1: All correct <br> dM1: Substituting zero for $\dot{y}$ |
|  | $0=\left(20 \sin 60^{\circ}\right)^{2}-2 g \cos 30^{\circ} y_{\text {max }}$ <br> $y_{\text {max }}=17.7 \mathrm{~m}$ | dM1 |  | A1 |


| Question | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 6 (a) | $\mathbf{r}=(-6 \mathbf{i}+12 \mathbf{j})+(24 \mathbf{i}-18 \mathbf{j}) t$ $\mathbf{r}=6[(-1+4 t) \mathbf{i}+(2-3 t) \mathbf{j}]$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | 2 | M1: Using $\boldsymbol{r}=\boldsymbol{r}_{0}+\boldsymbol{v} t$ <br> A1: All correct |
| (b) | $s^{2}=6^{2}(-1+4 t)^{2}+6^{2}(2-3 t)^{2}$ | M1 |  | M1: Correct expression for $s$ or $s^{2}, 6^{2}$ not needed |
|  | $\frac{\mathrm{d} s^{2}}{\mathrm{~d} t}=6^{2} \times 2(-1+4 t) \times 4+6^{2} \times 2(2-3 t)(-3)$ $6^{2} \times 2(-1+4 t) \times 4+6^{2} \times 2(2-3 t)(-3)=0$ | dM1 <br> A1 <br> dM1 |  | dM1: Correct differentiation of $s$ or $s^{2}, 6^{2}$ not needed A1: Setting the derivative to zero dM1: Solving the correct equation, PI by the answer |
|  | $t=\frac{2}{5} \Rightarrow \text { Closest time is } 12: 24 \text { p.m. }$ | A1 |  | A1: $t=\frac{2}{5}$ or 0.4 or Closest time is $12: 24 \mathrm{p} . \mathrm{m}$. |
| (c) | At 12:24 p.m. $\mathbf{r}_{M}=\left(-12+18 \times \frac{2}{5}\right) \mathbf{j}=-\frac{24}{5} \mathbf{j}$ | B1F | 5 | B1F: Position vector of $M$ at 12:24 p.m. |
|  | At 12:34 p.m. $\mathbf{r}_{M}=\left(-6+24 \times \frac{34}{60}\right) \mathbf{i}=\frac{38}{5} \mathbf{i}$ | B1F |  | B1F: Position vector of $M$ at 12:34 p.m. |
|  | $\tan ^{-1} \frac{5}{\frac{24}{5}}$ | M1 |  | M1: Any correct trig ratio with their values |
|  | $=58^{\circ}$ | A1 | 4 | A1: For $58^{\circ}$, CAO |
|  | Total |  | 11 |  |




